

A Modified Mesh with Individually Monitored Interferometers for Fast Programmable Optical Processors

Kaveh (Hassan) Rahbardar Mojaver, Bokun Zhao, and Odile Liboiron-Ladouceur

Photonic DataCom

March 2023

Our Research Team and Presentation Outline

McGill University, Montréal, Québec, Canada

Our research in Photonic DataCom lab:

- Photonic integration for data communications
- Emerging photonic applications such as computing * for Machine Learning, AI, and quantum photonics

Presentation Outline

- Introduction on optical computing
- Introducing a modified mesh (Bokun mesh)
- Discussion on the attributes of Bokun mesh
- Comparing various MZI-based meshes

Dr. Kaveh Mojaver Dr. Dusan Gostimirovic Sunami Morrison

Ajay Dhillon

Heming Xu

Mohammad Reza Safaee Jose Garcia - Echeverria Rifat Nazneen

Yu Wu

Rebecca Rogers

Andv Li

Hasan Hoji

Machine Learning and Deep Learning in the Near Future

Is machine-learning using conventional hardware sustainable?

Object recognition deep-learning system using ImageNet data set

- By 2025 \rightarrow error level down to 5%
- Energy required = one month worth of generated carbon dioxide by New York City

What is a sustainable solution?

To fundamentally change the way we compute!

Computations, billions of floating-point operations

Extrapolation of percent error and energy consumption of a deeplearning system by 2025. Figure from [1].

[1] N. C. Thompson, K. Greenewald, K. Lee and G. F. Manso, "Deep Learning's Diminishing Returns: The Cost of Improvement is Becoming Unsustainable," in *IEEE Spectrum*,58 (10), pp. 50-55, October 2021.

Optical Processors for Machine Learning Tasks

- Machine learning tasks rely on vector matrix multiplication:
 - example: $[O]_{(N \times 1)} = [D]_{(N \times N)} \cdot [I]_{(N \times 1)}$

- Electronic processors use sequential procedure for vector–matrix multiplication and the algorithms used by electronic processors offer time complexity of $O(N^{2.376})$ [2].
 - example: $[D]_{(100\times100)}$. $[I]_{(100\times1)}$ requires around 20 KFLOPS \rightarrow 200 nsec with a 100 GFLOPS CPU.
- Programmable optical processor can perform the vector matrix multiplication with time complexity of O(1).
- The computation time for optical processors? Length of chip divided by the speed of light.
 - example: 1 cm/C = 33 psec

[2] D. Coppersmith and S. Winograd, "Matrix Multiplication via Arithmetic Progressions," Journal of Symbolic Computation, 9 (251), 1990.

Programmable optical processors - fundamentals

4×4 Programmable Optical Processor on Reck Mesh

Practical Implementation of Optical Processors in SiPh

4 × 4 MZI-based linear optical processor [3]

Diamond mesh of interferometers [4]

Questions and Challenges

- Analog processors are sensitive to phase settings
 - How long does it take to set the phases?
- How frequently can we change the weight matrix?
- Do we need closed loop control of phases? If yes, how can we monitor phase settings?
- Should the energy efficiency we report only for computation? Or should it account for the setting of the phases?

[3] F. Shokraneh, M. S. Nezami and O. Liboiron-Ladouceur, "Theoretical and Experimental Analysis of a 4×4 Reconfigurable MZI-Based Linear Optical Processor," *JLT*, 38(6), March 15, 2020.
 [4] F. Shokraneh, S. Geoffroy-Gagnon and O. Liboiron-Ladouceur, "The Diamond Mesh, a Phase-Error- and Loss-Tolerant Programmable MZI-Based Optical Processors for Optical Neural Networks," *OE*, 28(16), July 2020.

Setting/Monitoring MZI Phases

Second MZI with fixed bias (θ_2) acts as a splitter maintaining relationship

Diagonal path matters!

In our proposed mesh, for every MZI, there is a diagonal path between an input to an output!

For monitoring the state of MZI-16:

- Choose a diagonal path going through MZI-16: *I*'₃ to O₁
- Disable all input ports
- Enable input I'₃ and detect output O₁
- Dark upper part (no light) and bright lower part with amount of light intensity based on MZIs phase settings
- All MZIs in desired path have one null input (blue circles)
- Sweep the MZI-16 phase shifter (no need to change any other bias, keeping them constant. Other MZIs act as splitters.

Primed I/Os \rightarrow primary I/Os Primed I/Os \rightarrow for monitoring

Diagonal path matters (cont.)

In rectangular architectures (Clements) there is no diagonal path for every MZIs.

For monitoring the state of MZI-9:

- There is no diagonal path going through this MZI
- Connect laser to I₇ and detector to O₃
- There is light in both inputs of MZI-5 and MZI-2
- MZI-5 and MZI-2 must remain in the exact bar state
- The phase error in MZI-5 and MZI-2 will be added to MZI-9

Comparing 8×8 meshes

[5] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, *Physics Review Letters*, vol. 73, no.1, p. 58, 1994.
[6] F. Shokraneh, S. Geoffroy-gagnon, and O. Liboiron-Ladouceur, *Optics Express*, vol. 28, no. 16, pp. 23495–23508, 2020.
[7] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, *Optica*, vol. 3, pp. 1460, 2016.

Accuracy vs. insertion loss and phase error

Gaussian dataset classification

Accur		RECK	DIAMOND	CLEMENTS	BOKUN
	phase error (rad ²) × 10^2	5	3.9	6.1	7
(0/) /	with loss (dB·rad) × 10^2	7.6	8.9	14.5	13.3

MNIST dataset classification

	RECK	DIAMOND	CLEMENTS	BOKUN
Phase error (rad ²) × 10 ²	1.5	1.7	2.2	1.9
with loss (dB·rad) × 10^2	1.8	1.9	8.1	4.9

Figure of Merit (FoM) defined as the 75% accuracy contour line

Our team simulation package for optical neural networks (based on Neuroptica) with varying phase error and loss: <u>https://github.com/Xoreus/neuroptica</u>

11

Energy efficiency of MZI-mesh based processor

Energy consumption (in Joules) investigation:

- For 10 × 10 mesh topologies
- Assuming 20 mW/ π thermal optical phase shifter (TOPS)
- Operation (Op) is one matrix multiplication on incoming vector
- Vector rate set to 10 Gb/s
- Two scenarios investigated:
 - 1. Static weight matrix

2. Weight matrix reprogrammed at a rate of 2 kHz

Conclusion – MZI-mesh topologies for photonic computing

Conclusion

- Diagonal paths crucial for more accurate, and more energy efficient programming
- Proposed Bokun mesh offers diagonal path with mesh depth
- Proposed Bokun mesh tolerance to loss and phase error comparable to Clements mesh
- Proposed Bokun mesh provides enhanced energy efficient programmability

Future work

- Experimental Validation
- Bokun mesh for quantum photonics

Experimental validation results on our to-do list

K.R. Mojaver, B. Zhao, E. Leung, S.M.R. Safaee, O. Liboiron-Ladouceur, "Addressing the programming challenges of practical interferometric mesh based optical processors," *Optics Express*, March 2023 (Submitted)

Thank you!

Fonds de recherche Nature et technologies Québec 🔹 🔹

14

Slides are available at:

http://rahbardar.research.mcgill.ca/

