

Mode Division Multiplexing in Silicon Photonics for High-Speed Communication, Computation, and Quantum Information

Kaveh (Hassan) Rahbardar Mojaver and Odile Liboiron-Ladouceur

June 2023

Our Research Team and Presentation Outline

McGill University, Montréal, Québec, Canada

Our research in Photonic DataCom lab:

- Photonic integration for data communications
- Emerging photonic applications such as computing for Machine Learning, AI, and quantum photonics

Presentation Outline

- Mode-Division-Multiplexing Motivation and PDK
- Application in Switching
- Application in Quantum Computing
- Application in Classical Computing
- Summary and Future Works

Dr. Kaveh Mojaver Dr

Dr. Dusan Gostimirovic Ajay Dhillon

Mohammad Reza Safaee

Rifat Nazneen

Jose Garcia -Echeverria

Leonid Pascar

Sunami Morrison

Yu Wu

Rebecca Rogers

Andy Li

Hasan Hoji

2

Why Multi-Transverse-Mode Photonics?

Waveguide cross section

Solutions of Maxwell equation They are <u>orthogonal</u>

Transverse electric (TE) modes

We can use different transverse modes as orthogonal channels - Similar to different wavelength channels in wavelength division multiplexing (WDM)

Multi-Transverse-Mode PDK for 220 nm SiPh

Standard foundries PDKs are single mode only.

Open access PDK with validated Multi-transverse-mode components:

github.com/KavehMojaver/SiPh_MDM_PDK

4

Multi-Transverse-Mode PDK for 220 nm SiPh (cont.)

Multi-Transverse-Mode PDK for 220 nm SiPh (cont.)

Applications in Switching

NO DO

7

Applications in Switching

A. Das, G. Zhang, K. R. Mojaver and O. Liboiron-Ladouceur, IEEE PTL 33 (11), 2021.

Applications in Switching (cont.)

Applications in Quantum Computing

Evolution of Optical Quantum Gates/Processors

McGill

11

Optical Linear Transformation for Classical and Quantum Computing

Conventional MZI-based Programmable Optical Processors

Finding Transfer Matrix

McGill

14

Adding Mode Exchanger

Scaling to Higher Dimensions

	Path encoded	Transverse mode encoded
Number of MZIs required for $N \times N$ linear transformation	$\frac{N(N-2)}{2}$	$\frac{N(N-2)}{8}$
Number of MZIs required for 8×8 linear transformation	24	6

Applications in Classical Computing

Phase error, calibration, and programming

How precise should the phase setting be?

- Phase shifter inaccuracy caused by various effects, mainly thermal crosstalk and electro-optic precision (bias voltage accuracy and stability)
- ❑ Accuracy drops from 90% down to 60 for phase variance of less than 0.1 rad to approximately 0.2 rad.
- □ A 100 um TiN-based TOPS with a 2.7K temperature fluctuation lead to an accuracy drop to 60%
- This is equivalent to approximately 30 mV of voltage deviation

2.7 K of temperature error

Calibration and Programming the Optical Processors

Application in Optical Computing

Multi-Transverse-Mode Optical Processor (MTMOP) 2×2 Building Block

- K. R. Mojaver and O. Liboiron-Ladouceur, "On-chip Optical Phase Monitoring in Multi-Transverse-Mode Integrated Silicon-based Optical Processors," IEEE JSTQE, 28 (6), 2022. - US Provisional 63/344.174

Phase Monitoring in MTMOP

Conclusion

Conclusion

- Provided an open access PDK for multi-transverse-mode SiPh
- Demonstrated the application of multi-transverse-mode SiPh in optical switching and computing
- Demonstrated the design of the first programmable transverse-mode-encoded quantum processors
- With Transverse-mode-encoded quantum processors we can process 4 qubits with 6 MZI (8 qubits with only 24 MZI).

Future work

- Experimental validation of the transverse-mode-encoded quantum processors
- Performing the quantum measurements in collaboration with the University of Twente
- Use Prefab to correct the SWG/inverse design structures

github.com/PreFab-Photonics/

Open Positions: MSc and PhD for Winter 2024

If you are interested in Optical Computing, please send your CV to:

hassan.rahbardarmojaver@mcgill.ca mojaver@ieee.org

Thank you!

Fonds de recherche Nature et technologies Québec 🎄 🎄

24

UNIVERSITY OF TWENTE.

Slides are available at: http://rahbardar.research.mcgill.ca/

